
yote

No More Loopy Code
Data Science Goes Functional

whoami: yote

• Biologist turned biomathematician

• Great interest in provably correct code and functional programming

• Does „something with data“ in industry and for nonprofits.

• Lots of coding, but no „proper“ SE practice

How did we get here?

Hackover still missing :(

Data analyses play a crucial role in society…

• No part of modern life is detached from data and their analysis:

• Governance and policy-making

• Healthcare

• Business

• …

…yet, they can be ridiculously wrong.

…yet, they can be ridiculously wrong.

Enter Functional Programming (FP)

• Obligatory disclaimer: Writing robust analytical code is not 1:1 equivalent to
coding in a functional style.

• However, it makes certain parts of it easier.

• I will talk about general FP concepts, …

• … which you can also use in (nearly) every other language.

Enter Functional Programming

TL;DR?
Lots of things that make our life easier!

• Small and pure functions, i.e. without mutable state or side-effects

• Ideally in a declarative style instead of imperative „step-by-step“ one

• Both makes it easier to verify „by inspection“

• Function application and composition in a modular manner („bottom-up approach“)

• This allows again for a declarative style…

• … and to reason more easily about how different parts of the code interact.

• This also touches the idea of functions being „first-class citizens“

1. Functions

Functions, example 1
isPalindrome

def isPalindrome(s: str) -> bool:
 n = len(s)
 for i in range(n):
 if s[i] != s[n-i-1]:
 return False
 return True

Pure

Small-ish…

Easy to verify? Off-by-one errors…

Mutable state? Technically yes.

Python (rather naive):

Functions, example 1
isPalindrome

def isPalindrome(s: str) -> bool:
 return s == s[::-1]

Python (FP):

Small.

Pure.

Declarative. Like a mathematical definition.

Thus easy to verify by inspection (if you know Python’s list slicing)

No mutable state anymore!

Why bother?

• Small functions are easier to think about and verify, as well as test and debug.

• Pure functions even more so.

• Avoiding mutable state makes it even easier.

• All of this becomes especially important if we want to perform more complex
numerical calculations.

• You wouldn’t believe what’s in some „scientific code.“

2. Function application

• Application: Applying a function
to arguments.

• Put differently: Calling a
function with arguments*.

• Data Science is all about
„doing something with data“,
i.e. applying functions.

Function application

f(x) = 3*x
f(5) = 3*5 = 15

Function application, example 1
calculateVAT

prices = [1.99, 2.95, 0.95, 2.55]

VATs = []
for price in prices:
 current_VAT = 0.19 * price
 VATs.append(current_VAT)

VATs = [0.3781, 0.5605, 0.1805, 0.4845]

Python (naive):

Function application, example 1
calculateVAT using map

prices = [1.99, 2.95, 0.95, 2.55]

VATs = list(map(lambda x: 0.19 * x, prices))

VATs = [0.3781, 0.5605, 0.1805, 0.4845]

Python (FP):

• map is a cornerstone of FP: We apply a function to all elements of a list.

• The function is provided as a parameter („higher-order function“).

• This is trivially and automatically parallelisable.

Function application, example 2
getSmallElements

• We want to select those prices that are „small“ — e.g. less than 2.00€.

• Python (naive):

prices = [1.99, 2.95, 0.95, 2.55]

smalls = []
for price in prices:
 if price < 2.00:
 smalls.append(current_VAT)

smalls = [1.99, 0.95]

Function application, example 2
getSmallElements using filter

prices = [1.99, 2.95, 0.95, 2.55]

small = list(filter(lambda x: x < 2.00, prices))

Python (FP):

• filter is another cornerstone of functional programming.

• We only want to retain those elements that fulfill a given „predicate“.

• The predicate is provided as a parameter („higher-order function“).

• This is also trivially and automatically parallelisable.

Why bother?

• In data science, we select and transform elements all the time.

• Abstracting these manual processes to simple calls to filter and map saves
repetitive code and makes meaning / intention more clear.

• This becomes especially apparent once we chain together multiple steps.

• Automatic parallelisation makes it easier to deal with larger datasets.

3. Function composition

• Composition: Stringing together
multiple functions to a new one.

• Data science relies heavily on
chained transformations.

• This avoids having mutable state
inbetween („df1, df2, df3, etc“).

• (A good type system can catch
many errors related to these already
at compile time. A strong /
expressive type system even more.)

Function composition

(Image: Stephan Kulla)

Function composition

• Native Python sadly does not have a built-in operator for this.

• You can write some_result = fun3(fun2(fun1(42))).

• But not some_result = (fun3.fun2.fun1) 42 like in Haskell.

• Or like fun1 %>% fun2 %>% fun3 in R.

• As much as I love Python (and don’t really love R), I think R syntax will be a bit
easier to understand.

• Hence, let’s look at some examples in R!

4. Practical examples

A nice toy dataset
Survival data of the passengers of the RMS Titanic.

(Image: Francis Godolphin Osbourne Stuart)

Let’s inspect the dataset first.

Let’s come up with a question.
Ideally, we should have started with a question, but whatever.

• Does survival differ between men and women? („Women and children first!“)

• However, there are different classes, which may confound our results.

• For now, let’s just focus on the first class.

• Children vs. adult may confound our results as well.

• For now, let’s only look at adults.

• Age may also affect survival, but analysing this is slightly more involved.

• Let’s postpone that for now :).

Look Ma, no mutable state!
We chain together our pipeline accordingly.

Let’s think again about age.

• We only consider men now, as we saw a huge influence of sex on survival.

• This time, we’ll use data from all three classes, because we assume that the
effect of sex on survival should not differ too much between classes.

• We’ll also divide Age into intervals of length 10 to remove some noise.

Indeed, age seems to affect survival.
Behind mutate, there’s nothing but a map 🤫.

Finally, let’s calculate survival probability.
No state, no side-effects, no problem!

Wrap-Up

FP lends itself nicely for data science.

• Small, pure, declarative functions are easy to verify, test, and debug.

• Avoiding mutable state in memory makes it harder to lose track and confuse
yourself along the way.

• Typical data science workflows can often be understood as subsequent steps
of selecting, transforming and ultimately aggregating data.

But FP is not a magic bullet.

• Steep learning curve in the beginning, especially for people used to
imperative.

• However, I would argue it’s well worth it.

• You’ll always have some side-effects if you interact with the real world.

• E.g.: reading from or writing to a database.

• But separating pure and impure parts goes a long way.

• High performance is possible, but sometimes requires some tweaking.

Conclusions

• FP makes certain errors harder, but is not a magic bullet.

• Finding a balance between FP vs. pragmatic imperative approaches, and
getting a feel for which is better when.

• The concepts we discussed can be useful in (nearly) all languages.

• My recommendation: Take it slow, gradually steal those ideas that seem
useful to you. There is no need to instantly commit 100%.

Thanks for your attention!

• Questions always very welcome!

• Feel free to hit me up:

• On Telegram: @GermanCoyote

• On Matrix: @yote:catgirl.cloud

• And of course in person…

• Feedback: http://nook-
luebeck.de/feedback#funktionaler-
code-fuer-data-science

http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science
http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science
http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science

