No More Loopy Code

Data Science Goes Functional

whoami: yote

* Biologist turned biomathematician
» (Great interest in provably correct code and functional programming
 Does ,something with data® in industry and for nonprofits.

* |Lots of coding, but no ,,proper”“ SE practice

How did we get here?

EEEE 06

@ media.ccc.de

Search for "correctness"

next

Functional correctness -- Haskell-ing your way to reliable code
N | = 1
\ '
) 20200503 ® 128 & yor

FSCK 2024

® 55 min

Bampet Functional correctness -- Haskell-ing your way to reliable code

) 2024-03-30 @ 127 ¢S yote and foxy
Easterhegg 2024: Rabbit Prototyping

Hackover still missing :(

Teaser

* FP lends itself very nicely to represent real-world data and what a data
scientist may do with it.

 However, FP seems still somewhat less used in data science than imaginable.

At MRMCD 2024 there may be a talk on

* ,No More Loopy Code: Data Science Goes Functional”

Data analyses play a crucial role In society...

 No part of modern life is detached from data and their analysis:
* Governance and policy-making
* Healthcare

e Business

...yet, they can be ridiculously wrong.

American Economic Association
https://www.aeaweb.org > articles » aer.100.2.573

Growth in a Time of Debt

by CM Reinhart - 2010 - Cited by 5435 — Growth in a Time of Debt by Carmen M. Reinhart and
Kenneth S. Rogoff. Published in volume 100, issue 2, pages 573-78 of American Economic...

...yet, they can be ridiculously wrong.

In this paper, we exploit a new multi-country
historical dataset on public (government) debt to
search for a systemic relationship between high
public debt levels, growth and inflation.! Our
main result 1s that whereas the link between
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several
percent lower. Surprisingly, the relationship
between public debt and growth 1s remarkably
similar across emerging markets and advanced
economies. This 1s not the case for inflation. We

n

Coverage

Worless 01w60 60109 90 orabove 30 or less .

~2j7~. Mimimum
28 |Maximum
29

30 |US

31 UK

44 |Finland
45 |Denmark
46 Canada
47 |Belgium
48 | Austre
49 |Australia

1946-2009
1946-2009
1946-2009
1946-2009
1952-2009
1548-2009
1956-2009
1947-2009
1946-2009
1951-2009
1948-2009
1970-2009
1946-2009
1949-2009
1946-2009
1950-2009
1951-2009
1947-2009
1948-2009
1951-2009

Enter Functional Programming (FP)

* Obligatory disclaimer: Writing robust analytical code is not 1:1 equivalent to
coding in a functional style.

« However, it makes certain parts of it easier.
* | will talk about general FP concepts, ...

e ... Which you can also use in (nearly) every other language.

Enter Functional Programming

Functional programming %A 52languages v
Contents hide Article Talk Read Edit View history Tools v
(Top) From Wikipedia, the free encyclopedia ()
History : . . .
For subroutine-oriented programming, see Procedural programming.
Vv Concepts : . . : :
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. ltis
rirstt-_class and higher-order a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of
unctions

Imperative statements which update the running state of the program.

Pure functions
In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as

arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style,
where small functions are combined in a modular manner.

Recursion

Strict versus non-strict
evaluation

Type systems Functional programming is sometimes treated as synonymous with purely functional programming, a subset of functional programming which treats all

Referential transparency functions as deterministic mathematical functions, or pure functions. When a pure function is called with some given arguments, it will always return the

same result, and cannot be affected by any mutable state or other side effects. This is in contrast with impure procedures, common in imperative

Data structures programming, which can have side effects (such as modifying the program's state or taking input from a user). Proponents of purely functional

TL;DR?

Lots of things that make our life easier!

 Small and pure functions, i.e. without mutable state or side-effects
* |deally in a declarative style instead of imperative ,,step-by-step” one
 Both makes it easier to verify ,,by inspection®
 Function application and composition in a modular manner (,,bottom-up approach®)
* This allows again for a declarative style...
* ... and to reason more easily about how different parts of the code interact.

* This also touches the idea of functions being ,first-class citizens"

1. Functions

Functions, example 1

isPalindrome
Python (rather naive): Pure
def isPalindrome(s: str) -> bool: Small-ish...
n = (s)
for i in range(n): Easy to verify? Off-by-one errors...
1f s[1] != s[n-1-17:
return False Mutable state? Technically yes.

return True

Functions, example 1

isPalindrome

Python (FP):

def i1sPalindrome(s: str) -> bool:
return s == s[::-1]

Small.
Pure.

Declarative. Like a mathematical definition.

Thus easy to verify by inspection (if you know Python’s list slicing)

No mutable state anymore!

Why bother?

 Small functions are easier to think about and verify, as well as test and debug.
 Pure functions even more Sso.
* Avoiding mutable state makes it even easier.

* All of this becomes especially important if we want to perform more complex
numerical calculations.

 You wouldn’t believe what’s in some ,,scientific code.”

2. Function application

Function application

o Application: Applying a function - *
to arguments. f()() — 3 X

» Put differently: Calling a *
function with arguments*. f(5) — 3 5 — 15
» Data Science is all about

,doing something with data”“,
l.e. applying functions.

Function application, example 1
calculateVAT

Python (naive):

prices = [1.99, 2.95, 0.95, 2.55]

VATs = []
for price 1n prices:
current VAT = 0.19 * price

VATs .append(current VAT)

VATs = [0.3781, 0.5605, 0.1805, 0.4845]

Function application, example 1

calculateVAT using map

Python (FP):
prices = [1.99, 2.95, 0.95, 2.55]
VATs = list(map(lambda x: 0.19 * x, prices))

VATs = [0.3781, 0.5605, 0.1805, 0.4845]

 map is a cornerstone of FP: We apply a function to all elements of a list.
* The function is provided as a parameter (,,higher-order function®).

* This is trivially and automatically parallelisable.

Function application, example 2
getSmallElements

 We want to select those prices that are ,small* — e.g. less than 2.00<€.
* Python (naive):
prices = [1.99, 2.95, 0.95, 2.55]
smalls = []
for price 1n prices:
1f price < 2.00:

smalls.append(current VAT)

smalls = [1.99, 0.95]

Function application, example 2
getSmallElements using filter

Python (FP):

prices = [1.99, 2.95, 0.95, 2.55]

small = ((lambda x: x < , prices))

 filter is another cornerstone of functional programming.
 We only want to retain those elements that fulfill a given ,,predicate”.
* The predicate is provided as a parameter (,,higher-order function®).

* This Is also trivially and automatically parallelisable.

Why bother?

e |n data science, we select and transform elements all the time.

o Abstracting these manual processes to simple calls to filter and map saves
repetitive code and makes meaning / intention more clear.

* [his becomes especially apparent once we chain together multiple steps.

o Automatic parallelisation makes it easier to deal with larger datasets.

3. Function composition

Function composition

 Composition: Stringing together
multiple functions to a new one.

» Data science relies heavily on
chained transformations.

* This avoids having mutable state
inbetween (,df1, df2, df3, etc*).

* (A good type system can catch
many errors related to these already
at compile time. A strong /
expressive type system even more.)

A gef: A-=C

(Image: Stephan Kulla)

Function composition

* Native Python sadly does not have a built-in operator for this.

e You can write some result = fun3 (fun2 (funl (42))).

 Butnot some result = (fun3.fun2.funl) 42 like Iin Haskell.

e Orlike funl %$>% fun?2 %>% fun3in R.

 As much as | love Python (and don’t really love R), | think R syntax will be a bit
easier to understand.

 Hence, let’s look at some examples in R!

4. Practical examples

A nice toy dataset

Survival data of the passengers of the RMS Titanic.

. 2 -
SaE B .’.._.‘gééﬂi B S A

: SRR R
lllll'-l!ll,uullll"111) 1!’".!0.'..

(Image: Francis Godolphin Osbourne Stuart)

> head(titanic)

Let’s Inspect the dataset first.

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket
1 1) 3 Braund, Mr. Owen Harris male 22 1) A/5 21171
2 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 Y PC 17599
3 3 1 3 Heikkinen, Miss. Laina female 26) @ STON/02. 3101282
4 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 Y 113803
5 5 0 3 Allen, Mr. William Henry male 35 Y Y 373450
6| 6) 3 Moran, Mr. James male NA)) 330877
>

Fare Cabin Embarked

7.2500
71.2833
7.9250
53.1000
8.0500
8.4583

C85

C123

O Wnununmmom

Let’s come up with a question.

Ideally, we should have started with a question, but whatever.

* Does survival differ between men and women? (,,Women and children first!*)
 However, there are different classes, which may confound our results.
 For now, let’s just focus on the first class.
* Children vs. adult may confound our results as well.
* For now, let’s only look at adults.
 Age may also affect survival, but analysing this is slightly more involved.

* |Let’s postpone that for now :).

We chain together our pipeline accordingly.

Look Ma, no mutable state!

> titanic %% > titanic %%

+ filter(Pclass == 1) %% + filter(Pclass == 1) %%

+ filter(Age > 21) %>% + filter(Age > 21) %%

+ select(c("Sex", "Survived")) + select(c("Sex", "Survived")) %%
Sex Survived + table()

1 female 1 Survived

2 female 1 Sex 0 1

3 male 0 female 2 67

4 female 1 male 57 36

5 male 1

6 male 0

/ male 0

8 male 0

9 female 1

10 male 0

Let’s think again about age.

* \We only consider men now, as we saw a huge influence of sex on survival.

e This time, we’ll use data from all three classes, because we assume that the
effect of sex on survival should not differ too much between classes.

 We’ll also divide Age into intervals of length 10 to remove some noise.

Indeed, age seems to affect survival.
Behind mutate, there’s nothing but a map @ .

+ + + V

Ooco~NOTULT P WN B

titanic %%
filter(Sex == "male") %>%
mutate(Agecut = cut(Age, breaks = seq(@, 100, 10))) %%
select(c("Agecut", "Survived"))
Agecut Survived
(20,30]
(30,40]
<NA>
(50,60]
(0,10]
(10,20]
(30,40]
(0,10]
<NA>
(30,40]
(30,40]
(20,30]
<NA>

SRPrFRPOPFRPOOOOOOOSOS

> titanic %%

mutate(Agecut = cut(Age, breaks

"male") %>%

seq(@, 100, 10))) %%

select(c("Agecut", "Survived")) %>%

+ filter(Sex ==

+

+

+ table()

Survived

Agecut 2 1
(0,10] 14 19
(10,20 59 10
(20,30] 126 23
(30,40 77 23
(40,50 43 12
(50,60 24 4
(60,70] 13 1
(70,80] 4 1
(80,90 o 0
(90,100] © 0O

Finally, let’s calculate survival probability.

No state, no side-effects, no problem!

> titanic %%
filter(Sex == "male") %>%
mutate(Agecut = cut(Age, breaks = seq(@, 100, 10))) %%
group_by(Agecut) %>%
summarise(Surv_Prob = mean(Survived))
A tibble: 9 x 2
Agecut Surv_Prob

I

<fct> <dbl>
1 (0,10] 0.576
2 (10,20] 0.145
3 (20,30] 0.154
4 (30,40] 0.23
5 (40,50] 0.218
6 (50,600] 0.143
7 (60,70] 0.0714
8 (70,80] 0.2
9 <NA> 0.129

>

FP lends itself nicely for data science.

 Small, pure, declarative functions are easy to verify, test, and debug.

* Avoiding mutable state in memory makes it harder to lose track and confuse
yourself along the way.

e [ypical data science workflows can often be understood as subsequent steps
of selecting, transforming and ultimately aggregating data.

But FP Is not a magic bullet.

o Steep learning curve in the beginning, especially for people used to
Imperative.

 However, | would argue it's well worth It.

 You’'ll always have some side-effects if you interact with the real world.
 E.Q.: reading from or writing to a database.
 But separating pure and impure parts goes a long way.

 High performance is possible, but sometimes requires some tweaking.

Conclusions

* FP makes certain errors harder, but is not a magic bullet.

 Finding a balance between FP vs. pragmatic imperative approaches, and
getting a feel for which is better when.

 The concepts we discussed can be useful in (nearly) all languages.

« My recommendation: Take it slow, gradually steal those ideas that seem
useful to you. There is no need to instantly commit 100%.

Thanks for your attention!

e Questions always very welcome!
* Feel free to hit me up:
* On Telegram: @GermanCoyote
* On Matrix: @yote:catgirl.cloud
* And of course Iin person...

* Feedback: http://nook-
luebeck.de/feedback#funktionaler-
code-fuer-data-science

http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science
http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science
http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science

