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No More Loopy Code
Data Science Goes Functional



whoami: yote

• Biologist turned biomathematician


• Great interest in provably correct code and functional programming


• Does „something with data“ in industry and for nonprofits.


• Lots of coding, but no „proper“ SE practice



How did we get here?

Hackover still missing :(



Data analyses play a crucial role in society…

• No part of modern life is detached from data and their analysis:


• Governance and policy-making


• Healthcare


• Business


• …



…yet, they can be ridiculously wrong. 



…yet, they can be ridiculously wrong. 



Enter Functional Programming (FP)

• Obligatory disclaimer: Writing robust analytical code is not 1:1 equivalent to 
coding in a functional style.


• However, it makes certain parts of it easier.


• I will talk about general FP concepts, …


• … which you can also use in (nearly) every other language.



Enter Functional Programming



TL;DR?
Lots of things that make our life easier!

• Small and pure functions, i.e. without mutable state or side-effects


• Ideally in a declarative style instead of imperative „step-by-step“ one


• Both makes it easier to verify „by inspection“ 


• Function application and composition in a modular manner („bottom-up approach“)


• This allows again for a declarative style…


• … and to reason more easily about how different parts of the code interact.


• This also touches the idea of functions being „first-class citizens“



1. Functions



Functions, example 1
isPalindrome

def isPalindrome(s: str) -> bool:
    n = len(s)
    for i in range(n):
        if s[i] != s[n-i-1]:
            return False
    return True

Pure


Small-ish…


Easy to verify? Off-by-one errors…


Mutable state? Technically yes.

Python (rather naive):




Functions, example 1
isPalindrome

def isPalindrome(s: str) -> bool:
    return s == s[::-1]

Python (FP):


Small.


Pure.


Declarative. Like a mathematical definition.


Thus easy to verify by inspection (if you know Python’s list slicing)


No mutable state anymore!



Why bother?

• Small functions are easier to think about and verify, as well as test and debug.


• Pure functions even more so.


• Avoiding mutable state makes it even easier.


• All of this becomes especially important if we want to perform more complex 
numerical calculations.


• You wouldn’t believe what’s in some „scientific code.“



2. Function application



• Application: Applying a function 
to arguments.


• Put differently: Calling a 
function with arguments*.


• Data Science is all about 
„doing something with data“, 
i.e. applying functions.

Function application

f(x) = 3*x 
f(5) = 3*5 = 15



Function application, example 1
calculateVAT

# prices = [1.99, 2.95, 0.95, 2.55]

VATs = []
for price in prices:
    current_VAT = 0.19 * price
    VATs.append(current_VAT)

# VATs = [0.3781, 0.5605, 0.1805, 0.4845]

Python (naive):




Function application, example 1
calculateVAT using map

# prices = [1.99, 2.95, 0.95, 2.55]

VATs = list(map(lambda x: 0.19 * x, prices))

# VATs = [0.3781, 0.5605, 0.1805, 0.4845]

Python (FP):


• map is a cornerstone of FP: We apply a function to all elements of a list.


• The function is provided as a parameter („higher-order function“).


• This is trivially and automatically parallelisable.



Function application, example 2
getSmallElements

• We want to select those prices that are „small“ — e.g. less than 2.00€.


• Python (naive):

# prices = [1.99, 2.95, 0.95, 2.55]

smalls = []
for price in prices:
    if price < 2.00:
        smalls.append(current_VAT)

# smalls = [1.99, 0.95]



Function application, example 2
getSmallElements using filter

# prices = [1.99, 2.95, 0.95, 2.55]

small = list(filter(lambda x: x < 2.00, prices))

Python (FP):


• filter is another cornerstone of functional programming.


• We only want to retain those elements that fulfill a given „predicate“.


• The predicate is provided as a parameter („higher-order function“).


• This is also trivially and automatically parallelisable.



Why bother?

• In data science, we select and transform elements all the time.


• Abstracting these manual processes to simple calls to filter and map saves 
repetitive code and makes meaning / intention more clear.


• This becomes especially apparent once we chain together multiple steps.


• Automatic parallelisation makes it easier to deal with larger datasets.



3. Function composition



• Composition: Stringing together 
multiple functions to a new one.


• Data science relies heavily on 
chained transformations.


• This avoids having mutable state 
inbetween („df1, df2, df3, etc“).


• (A good type system can catch 
many errors related to these already 
at compile time. A strong / 
expressive type system even more.)

Function composition

(Image: Stephan Kulla)



Function composition

• Native Python sadly does not have a built-in operator for this.


• You can write some_result = fun3(fun2(fun1(42))).


• But not some_result = (fun3.fun2.fun1) 42 like in Haskell.


• Or like fun1 %>% fun2 %>% fun3 in R. 

• As much as I love Python (and don’t really love R), I think R syntax will be a bit 
easier to understand.


• Hence, let’s look at some examples in R!



4. Practical examples



A nice toy dataset
Survival data of the passengers of the RMS Titanic.

(Image: Francis Godolphin Osbourne Stuart)



Let’s inspect the dataset first.



Let’s come up with a question.
Ideally, we should have started with a question, but whatever.

• Does survival differ between men and women? („Women and children first!“)


• However, there are different classes, which may confound our results.


• For now, let’s just focus on the first class.


• Children vs. adult may confound our results as well.


• For now, let’s only look at adults.


• Age may also affect survival, but analysing this is slightly more involved.


• Let’s postpone that for now :).



Look Ma, no mutable state!
We chain together our pipeline accordingly.



Let’s think again about age.

• We only consider men now, as we saw a huge influence of sex on survival.


• This time, we’ll use data from all three classes, because we assume that the 
effect of sex on survival should not differ too much between classes.


• We’ll also divide Age into intervals of length 10 to remove some noise.



Indeed, age seems to affect survival.
Behind mutate, there’s nothing but a map 🤫.



Finally, let’s calculate survival probability.
No state, no side-effects, no problem!



Wrap-Up



FP lends itself nicely for data science.

• Small, pure, declarative functions are easy to verify, test, and debug.


• Avoiding mutable state in memory makes it harder to lose track and confuse 
yourself along the way.


• Typical data science workflows can often be understood as subsequent steps 
of selecting, transforming and ultimately aggregating data. 



But FP is not a magic bullet.

• Steep learning curve in the beginning, especially for people used to 
imperative.


• However, I would argue it’s well worth it. 


• You’ll always have some side-effects if you interact with the real world.


• E.g.: reading from or writing to a database.


• But separating pure and impure parts goes a long way.


• High performance is possible, but sometimes requires some tweaking.



Conclusions

• FP makes certain errors harder, but is not a magic bullet.


• Finding a balance between FP vs. pragmatic imperative approaches, and 
getting a feel for which is better when. 


• The concepts we discussed can be useful in (nearly) all languages.


• My recommendation: Take it slow, gradually steal those ideas that seem 
useful to you. There is no need to instantly commit 100%.



Thanks for your attention!

• Questions always very welcome!


• Feel free to hit me up:


• On Telegram: @GermanCoyote


• On Matrix: @yote:catgirl.cloud


• And of course in person…


• Feedback: http://nook-
luebeck.de/feedback#funktionaler-
code-fuer-data-science 

http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science
http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science
http://nook-luebeck.de/feedback#funktionaler-code-fuer-data-science

